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This paper describes the calibration of a camera-and-plane-of-light ranging system. Equa-
tions are derived which relate the image coordinates in the camera to the external coordinate
system. These equations contain coefficients which are functions of the geometrical parameters
of the camera/light-source system (focal length, pixel spacing, camera-to-plane-of-light dis-
tance, etc.). Several pictures are taken of a test block at different distances, and the geometrical
parameters in the equations are varied to achieve a best (least squares) fit to the data. The
resulting equations have a remaining error of less than one pixel, and have been used
successfully on a parts-acquisition robot. © 1986 Academic Press. Inc.

I. BACKGROUND

Camera calibration is the determination of the correspondence between points in
the camera image and points in physical space. Only when the camera is properly
calibrated can its 2-dimensional raster coordinates be translated into real-world
locations for the objects in its field of view.

In this paper we examine specifically the configuration in which a light stripe is
projected on an object, in order to determine the range (distance) to the object. The
same calibration techniques may be applied to other geometries as well.

The technique of obtaining range by means of triangulation using a plane of light
has been widely discussed (see, e. g., [1-7]). This technique has also been extended
to multiple planes {8, 9]. The effort described in [9] in fact provided the impetus for
the calibration procedure described in this paper.

As described there, a camera is mounted above the wrist of the robot. A light
source is attached below the wrist, and is fitted with a slit and a cylindrical lens, so
that the light emanating from it is confined to a plane region of space. An object in
the field of this light source is thus illuminated by a narrow stripe or line. The
position of this line in the camera’s image can be used to obtain the distance to
points on the object that are both illuminated by the light and visible to the camera.
Knowing this distance (the range, or z-coordinate), the x and y coordinates of
points on the object can then be obtained straightforwardly from a fully illuminated
image.

~ First, however, it is necessary for the camera/lighting configuration to be
calibrated; that is, for the precise relationship to be established between points on
the image and their corresponding coordinates in the external world. The calibration
must in principle be performed each time the camera system is demounted or
modified. In the past a laborious procedure has been followed of manually ascer-
taining the entries in several 128-entry tables which were then used as look-up tables
by the camera’s software.

Other calibration procedures are mentioned in the literature. A straightforward
means of calibrating a floodlit image is presented in [10]. In this case only one
200
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parameter, the scaling factor, was to be determined, and distortion and misalign-
ment were neglected. In {11] a fitting technique was used to determine eight
camera/robot parameters by fitting them to four data points. In this case range data
were obtained from the phase shift of a modulated laser beam, so that no
triangulation parameters were needed. Again, it appears that distortion and mis-
alignment were not included.

In this paper we examine a number of camera parameters, including the location
of the lens relative to the plane-of-light, the raster dimensions, lens distortion, raster
misalignment, and light-source misalignment, and fit these to a number of data
points (between 30 and 150).

In Section II we derive relatively simple expressions which represent the real-world
coordinates in terms of the rows and columns of the camera pixels. These equations
are expanded in Section III to take into account misalignment and lens distortion.
In Section IV the various transformations are summarized, and given in terms of the
physical parameters of the camera and its mounting, such as lens focal length, pixel
spacing, and distance from the camera to the plane of light. The analogous
equations for a fully illuminated object, retaining the distortion and misalignment
terms, are also given.

These analytical expressions may be used directly in the run-time coordinate
transformation routines, or they may be used offline to generate numerical tables, to
allow more rapid computation.

In performing the calibration, rather than attempt to measure these camera
parameters with the necessary accuracy, we have chosen to fit the parameterized
expressions to a number of measured data points. This is described in Section V.
This fitting procedure also assures that the real world data will be well represented
by the model.

[I1. DERIVATION OF THE BASIC EQUATIONS

In this section we derive the basic equations for inferring, from the picture
coordinates of an imaged object, the location of the object itself in an external
coordinate system. Some assumptions are first made. to simplify the derivation.
Next, the z’ transformation is derived, and then the x’.

Assumptions

In the following derivation we first assume (1) that the lens behaves as an ideal.
thin lens; (2) that the pixel matrix is aligned with the external coordinate system; (3)
that the reflecting surface is perfectly diffuse; and (4) that the pixel raster is “ideal.”

The ideal thin lens assumption states that the lens can be replaced by a pinhole,
as far as determining where the image will be (see [12-15]). The location of this
equivalent pinhole is called the optical center of the lens.

The alignment assumption states that the pixel rows must be parallel to the plane
of light, and that the columns hence are perpendicular. The diffuse-surface assump-
tion requires that the intensity of the reflected light be independent of reflection
angle, and the assumption of an ideal pixel raster requires that the camera be
noise-free and of infinite resolution. Effects of violating these assumptions are
discussed subsequently, and appropriate corrections added.
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FiG. 1. Image formation for an ideal, thin lens.

Coordinate Systems

As indicated schematically in Fig. 1, all rays from a given field point are assumed
to pass through the optical center and to continue in a straight line to the image
plane. Figure 2 shows a similar scenario, with an arbitrary field point labelled
(x. ¥, z), and its corresponding image point (g, #). The y values along the object
are also indicated, and values of 4 in the image plane are shown. Note that since the
lens inverts the image, 4 increases downward.

Image Coordinates. Points in the real image are identified by their distances (g, 4)
from the image center, where the g axis on the image is parallel to the x axis in the
external world, and A is aligned with y. In the image, g distances are measured
“horizontally,” and h * vertically.” .

Pixel Coordinates. The pixels within the camera are discrete, and are identified by
integer pairs (i, j) giving their column and row number, respectively, from the
center of the raster. Define s to be the pixel spacing (the distance from the center of
one pixel to the center of the adjacent pixel) in the g direction (*horizontally”), and
¢ the spacing in the & direction (* vertically”). Then the image coordinates (g, #) of
the center of a pixel are related to the integer pair (i, j)byg=s*iand h =1+ j.
In the remainder of this section we derive expressions for determining the real-world
coordinates of a point within the plane of light, given its position (g, #) in the
image.
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FiG. 2. Image formation, showing the relationship between (external) camera coordinates ( x. y. z)
and image coordinates (g, h).
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F1G. 3. Definition of camera coordinates.

Camera Coordinates. Two real-world (external) coordinate systems are used in the
following derivation. The first is the natural coordinate system of the camera. In this
system the z axis lies along the camera axis, with the origin at the optical center of
the lens, and the positive direction outwards into the external world (Fig. 3). The x
axis is chosen parallel to the pixel rows, and the y axis is perpendicular to the other
two.

The positive direction of these axes is taken to be to the right (for x) and upwards
(for y), when seen looking outward from the lens at the external world. It is noted
that this choice of orientations results in a left-handed coordinate system.

Plane-of-light Coordinates. The second coordinate system is based on the pro-
jected-light source, and will be denoted with primes: (x’, y’, z’) (Fig. 4). The z’ axis
is located within the plane of light, directly under the camera axis (the z axis defined

y' ¥
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camera

\"
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x

FiG. 4. Definition of plane-of-light coordinates and their relationship to camera coordinates.
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above). The origin of the plane-of-light system has been chosen arbitrarily to lie at
the face of the light projector. The x’ axis also lies within the light plane, whereas
the y’ axis is perpendicular to it.

Since the pixel rows are parallel to the plane-of-light, the x and x’ coordinates of
any point will be the same. The z and z’ axes intersect at a point called the
“crossing point,” and form an angle B (see Fig. 4). Note that one coordinate system
can be obtained from the other by a translation and a rotation of angle 8 about the
X axis.

2’ Coordinate (Range)

In this subsection we derive an expression for the range z’ as a function of image
position (i, j) for points illuminated by the light. Because the light is confined (by
the projector) to the y’ = 0 plane, we know a priori that y’ = 0 for any illuminated
field point.

Figure 5 shows the camera and light source as seen from the side. The plane of
the figure is described by x’ = 0. The axis of the camera intersects the plane of light
at the crossing point, labelled XK. The crossing point, X, is at a distance C from the
origin of the plane-of-light (primed) coordinate system. The optical center of the
lens is labelled O, and is a distance d above the light plane. In this figure the field
point P(x’, y’, z’) lies on the 2z’ axis (x’ = 0). (Because it is in the plane of light,
y’ = 0 also, as noted above.) For a distortion-free lens, properly aligned, z’ is a
function of j only and the x’ = 0 result applies also for arbitrary x’.

Figure 6 shows an enlarged view of the camera portion of Fig. 5; f is nominally
the focal length of the lens, but is actually the distance from the optical center of the
lens to the image plane. (This distance is exactly the focal length only if the lens is
focussed at infinity.) h is the distance of the image point from the center of the
image in the y’ direction. We have immediately

tana = h/f. (1)

J P flash plane

(2]
-3
"y

Hash

DE—

F1G. 5. Camera and plane-of-light geometry seen from the side. for an illuminated point P in the
x’ = 0 plane. OK is the optical axis of the camera. The plane of the drawing is defined by x’ = 0.
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F1G. 6. Enlarged view of the camera geometry of Fig. 5.

Applying the law of sines to the exterior triangle OKP in Fig. 5, we have

sin a siny

d dy ’

(2)

where v is the angle made by the ray OP with the plane of light, and d; = KO is
the (fixed) distance of the crossing point from the optical center. d, = KP is the
unknown z’ distance (positive or negative) of the illuminated object from the
crossing point, and d, + C is the object’s z’ coordinate. Note that y = 8 — a, so
that

siny = sin 8*cosa — cos 8 *sina. (3)
Thus

d,*sina

sin Bxcosa — cos B *sina
dy*tana/sin

1 -ctnB=tana

(dycscB/f)*h
1—-(ctnB/f)*h

In terms of raster units, where s and ¢ are the horizontal and vertical pixel
spacing, respectively, the image point (g, ) is given by the integer pair (i, j), where
g=s=iand h=t+j. Then

Axj

dy = ——
L 1—Bxj

(5)
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where

A =dys(t/f)*csc

= dx(t/f)*(cscB)’ ‘ (6)
B = (t/f)*ctnB.

(We have defined d to be the height of the lens center above the plane of light.)
Thus

A*j

TS 1B

+ C, N

where C is the z’ coordinate of the crossing point. Equation (7) above applies for
any value of x’.

Note that the expression for z’ is singular at some value of j for which
(1 — B =* j) is zero. This corresponds to the vanishing point, the point in the image
for which z’ approaches infinity. In fact, it is possible to determine the constant B
solely from observing the limiting pixel as z’ becomes very large.

Roughly speaking, one may think of 4 as a measure of the magnification of the
lens (A j/Az’) at the center of the field. B is the location of the vanishing point, and
C is the z’ coordinate of the crossing point.

x’ Coordinate

In this subsection we examine points P(x’, y’, z’) for which x’ need not be zero
(although of course y’ = 0 because the point lies within the plane of light); z’ is still
given by Eq. (7) above and we now derive an expression for x’.

Determination of the x’ coordinate in terms of the pixel number / is conceptually
simpler than the z’ case, and is shown in Fig. 7. The two triangles in the figure are
similar, and we have immediately g/f, = x’/d,, or

x'=(d/fi)* g (8)

d, is the distance from the origin of the camera coordinate system to the point P,
which is the projection of the point P onto the z’ axis. (Figure 5 also shows d, seen
from the side, for the case x’ = 0.) Also, f; is the distance from the optical center
of the lens to the image point (0, #), which is the projection of the arbitrary point
(g, h) onto the 4 axis. Referring to Fig. 6, we have

fi=f+h 9

FiG. 7. Camera geometry seen from above, for an arbitrary illuminated point P. PO is the projection
of P onto the z’ axis. The plane of the drawing is defined by P, PO, and O.
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so that in general f; differs from f [16]. In Fig. 5 the triangle OMP is a right
triangle, so that

d}=d*+ (2 - F), (10)
where F is the z’ coordinate of the optical center O.

Combining these equations, and expressing the image distance g in raster
coordinates as s * i, gives

x'=DrisfE+ [ - F 1+ [h/fT, (11)
where
D =s/f
E=d? (12)

F  is the 2’ coordinate of the optical center of the lens.

Note from Fig. 5 that C = F + d »ctn 8.

In physical terms, D, together with the square root factors, is the magnification in
the horizontal (x’) direction, and depends on z’. E is the (square of the) separation
between camera and plane of light, and F results from the arbitrariness in the
choice of origin of the z’ coordinate. (If we required the origin of z’ to be at the
optical center of the lens, there would be no need for F).

II1. DISCUSSION OF ASSUMPTIONS

The derivation above proceeded under several simplifying assumptions. In prac-
tice, the departures from these assumptions contribute measurably to the errors in
the final data. In this section we develop corrections to be applied when the
assumptions are not strictly valid. The deviations explored are (1) distortion, (2)
nodal separation, (3) raster rotation, (4) raster translation, and (5) camera/light-
source misalignment. Also discussed are raster misalignment, diffuseness. noise, and
quantization. The complete transformation is then summarized in the following
section.

1. Distortion

We assumed above that the lens was an ideal thin lens, so that the image of an
object point could be found by drawing a straight line from the object, through the
optical center, to the image plane. In practice the lens is neither ideal nor thin.

If a lens is not ideal, this means that not all points in space map through the same
optical center. Thus rays converging on a point near the edge of the picture may
pass through a point somewhat closer to (or further away from) the image plane,
than rays converging on the center of the picture. It is this effect which is known as
distortion.

In the following, we take (g, &) to be the coordinates of the actual image point,
and (g,, 4,) to be the image point coordinates that would obtain with a *perfect”
(i. e., non-distorting) lens of the same focal length.

Clearly, since the lens is axisymmetric, the distortion is also axisymmetric.
Expressed in terms of polar coordinates (r, @) on the image, the distortion can
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depend only on r, not on 4:
r = function (r,),

where r, = g7 + hZ. The lowest-order distortion component present is the r* term
[12]; its coefficient will be referred to as G.
The effect of this term on the image is

“"p G*)P

g=g,,*(1 + G*rpz)

(13)
h=h,x(1+G*r?).
If G is negative, the distortion is called barrel distortion; if positive, pincushion
distortion. The appearance of a rectangular grid, seen through a lens with pincush-
ion distortion, is sketched in Fig. 8.

Consider a straight object lying parallel to the x axis. In the image, using a perfect
lens, the object would again be straight, and parallel to the g axis. For a real lens.
however, the object appears slightly curved. Its deviation from straightness is
described by the value of its & coordinate near the edge of the image relative to its
vaiue at the A axis: & (at g) — & (at center). This deviation is therefore

h — h (atcenter) = G* h* g2, (14)

Such distortion was observed in three of the lenses used in this study.

FiG. 8. Rectanguiar grid as seen through a lens with pincushion distortion.
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F1G. 9. Camera and plane-of-light geometry (see Fig. 5) for a lens which is not thin. O, and O are
respectively the front and rear nodal points of the lens.

2. Nodal Separation

If a lens is not thin, there are two optical centers, or nodal points, rather than one.
Rays incident on the first nodal point emerge from the second at the same angle, as
shown in Fig. 9. For many photographic lenses, the distance N (nodal separation)
between the optical centers is considerably smaller than the physical thickness of the
lens. Moreover, the effects of this separation on the image are proportional to N /z,
and thus approach zero for points far from the camera.

For cases where the nodal separation N cannot be ignored, the derivation of Egs.
(7) and (11) proceeds much the same as before, and these equations are still valid.
Now, however, all external distances (such as d and F) are defined relative to the
front nodal point, whereas the lens’ focal length f is measured from the rear nodal
point. The following relationships apply:

dt'ronl = drear - N*Sin:B
Froont = Frear + N *cosp.

rear
3. Raster Rotation

If the pixel raster is not aligned with the outside coordinate system, the image will
appear to be rotated. For a rotation angle H.

g=g,*cos H — h,*sin H
15
h=g,*sin H+ h,*cos H, (15)
where (g, h) are the actual image coordinates, and (g,, ,) are those one would
have achieved with perfect alignment. For small angle H (rad) the first-order
correction is

g=8,—~Hx*h,

(16)
h=h,+ Hx*g,

4. Raster Translation

In addition to the possibility of image rotation, there is the possibility of image
translation, due to the center of the raster not coinciding with the lens axis. Writing
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(k.!) for the translation distances in pixel units in the directions of g and A,
respectively, the effect of such a translation on the “perfect setup” coordinates is
simply

g=g,tk=*s

17
h=hp+1#t. (17)

The pixel located on the optical centerline is thus offset by (%, /) from the center of
the raster. The parameters (k, /) (offset from the center) have been re-expressed as
(K, L), an offset from the lower left-hand corner of the raster. (Here K = k + MIDI,
and L =/ + MIDJ, where (MIDI, MIDJ) are the pixel coordinates of the raster
center relative to the lower left-hand corner.)

5. Camera / Light-Source Misalignment

The camera and light projector are held in their relative positions by a bracket,
and this bracket forms the natural reference for the plane-of-light coordinate
system. As a result of machining and assembly imperfections, the bracket we used
was not perfectly aligned with the optical axis of the camera. Two additional
parameters, [ and J, were added to account for this misalignment. [ is the x’
coordinate of the lens center, while J is the angle between the x and x’ axes,
measured about the y’ axis. These have no physical significance in the camera, but
should be viewed as an artifact of the (plane-of-light) coordinate system, arising
from choosing the light projector axis and the camera axis independently.

The true values z; and x; are given (to first order in J) by

xi=x"+Jxz' +1

(18)

2=z ~=Jax’.

6. Raster Misalignment

It has also been assumed that the pixel raster is perpendicular to the optical axis
of the lens. Slight departures from perpendicularity would manifest themselves in
yet additional correction terms to be applied. Much of this additional correction can
be absorbed by other parameters already defined. Perhaps for this reason, a good fit
with data was obtained in the configurations discussed in Section V, and these
additional terms were not explored.

7. Departure from Surface Diffuseness

If a surface is perfectly diffuse, the intensity of reflected light is independent of
reflection angle, i. e., light is reflected equally in all directions. When this is not the
case, some parts of the object appear brighter than others. When the image is
thresholded into black and white, the brighter parts of the object may appear larger
than the dimmer parts, and the centroid may thus be incorrectly determined. This
problem was sidestepped during calibration by using a small object, for which the
reflection angle was essentially constant. For large objects, care in thresholding is
required.

8. Camera Noise

Noise arising in the camera hardware appears in the image as occasional pixels
being lighter or darker than the actual illumination would dictate. This is manifested



CAMERA CALIBRATION 211

in the thresholded image by occasional white pixels in a black region, or vice versa.
By rejecting all areas of single pixel size, the effect of remaining noise was kept
small. Further, the noise appears to be random, so that it primarily affects the
scatter of the data, and not their mean values.

9. Quantization

The above transformations were derived as though pixel coordinates could take
on any value. In fact, only integer values are allowed, corresponding to the camera’s
discrete pixels in the image plane. Points in the image plane can only be reported to
lie at one pixel or at the adjacent pixel, and never in between.

A proper analysis of the effects of quantization is beyond the scope of this paper.
In general, however, for objects whose dimensions exceed several pixels in each
direction, as ours did, quantization may be expected to increase the scatter of the
data, while not introducing any appreciable systematic errors into the resuits.

IV. SUMMARY OF TRANSFORMATIONS

The full transformation equations, including the correction terms discussed
above, are collected here. Given a pixel at column i, row j measured from the lower
left pixel in the image plane, the following expressions determine the actual field
coordinates x’ and z’.

It is useful to recognize that there are three distinct physical “worlds” encoun-
tered in this calibration problem. These are the external or “real” world, the
physical image, and the camera raster.

Coordinate systems are defined for each of these worlds as follows. The external
world is described in terms of camera coordinates x, y, and z, and also in terms of
flash (light-projector) coordinates x’, y’, and z’ as described earlier in this paper.
The physical image is described by the physical image coordinates g and 4. These
coordinates have their origin on the camera axis, and have physical dimensions
(millimeters, in this paper).

The raster, by contrast, is taken to have no real physical distances. It is more like
a template from which monitor displays of any size can be constructed. Thus.
distances are expressed in terms of the number of picture elements (pixels) between
two points. The raster coordinates are / and j, and their origin is at the lower left of
the raster.

Thus there are really two transformations taking place. One is between the
external world and the physical image, and is determined by the lens and by the
camera and light projector geometry. The other is between the physical image and
the pixel raster. This later includes effects of the raster geometry, and raster position
and alignment relative to the lens. In this summary, care has been taken to keep
these two transformations separate. The full transformation is:

Raster coordinates (i, j) to physical image (g, h):

Raster translation:
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Raster rotation:

=1+ H+ j;

c . (20)
Ja=Jy— H#iy.
Pixel spacing:
g§=1iy*s
21
h=j,*t. @)
Physical image (g, /) to external world (x’, z’):
Lens distortion:
r=yg?+ h?
g1 =(1-Gxr’)xg (22)
hiy=(-G#*r¥)*h
Basic transformations:
h L (23)
/o + .
T 1T Ben,
x{=Dusg +|E+ [z;—F]Z/\/l + [h/f ), (24)
Axis misalignment:
xX'=x{—=J*z;i -1
(25)

2/ =z{ +J*xq,

where x’ and 2z’ are the coordinates actually measured in the plane-of-light
coordinate system. In the above,

A= dfrom ‘(CSCB)Z/]"

B = ctn 8/f.

C= Fiom + diyom *ctn B (26)
D=1/f

E=dig

Fomis the 2’ coordinate of the front nodal point of the lens.

The suffix “front,” used above, means that the relevant parameter is measured
from the front nodal point. Thus

=d,, — N=*sinf
=F__+ N=cosf.

rear

dfron(
F,

front

(27)
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Also

G is distortion (in units of inverse length squared),

H is the rotation anéle of the pixel raster about the optical axis (radians),
I is the x’ coordinate of the front nodal point of the lens center,

J is the angular misalignment between x’ and x (radians),

K is the raster translation in the / direction (in pixels),

L is the raster translation in the j direction (in pixels),

and

N is the nodal separation of the lens, i. e., the distance from the frontmost to
the rearmost principal nodal points.

In the above,

B is the angle between the optical axis and the light plane

d ron: 18 the y’ coordinate of the front nodal point of the lens (distance between
the lens and the light plane)

Firon: 18 the z’ coordinate of the front nodal point of the lens.
s is the pixel spacing in the i direction (column spacing, in mm /pixel)
t is the pixel spacing in the j direction (row spacing, in mm /pixel)

f is the focal length of the lens (as used), i. e., the distance of the rear nodal
point from the image plane.

Note that (I, d, F) are the (x’, y’, z’) coordinates of the front nodal point of the
lens.in the external coordinate system of the light source. Also, (K, L) are the (i, j)
coordinates of the lens centerline in pixel coordinates (K and L in pixels, and the
origin (i = 0, j = 0) at the lower left).

Many of the above parameters may be measured approximately by hand. More
accurate determinations of these parameters may be obtained by fitting to data. This
is discussed in the next section.

Note that the parameters determined above using the plane of light also de-
termine the magnification (as a function of z) for fully illuminated images, so that
no additional calibration is required. Thus. for an arbitrary point (x, y. z), in
camera coordinates, and for a perfect lens and camera,

x=(z/f)esxi

y=(z/f)xtx .

More generally, the raster (i, j) to physical image (g, #) transformation is the
same as for the line flash, Egs. (19)—-(21). This is so because the size and alignment
of the raster with the physical image in no way depends on the external lighting.
Similarly, the correction for lens distortion, Eq. (22), is the same, since the lens has

not changed. The remainder of the image-to-external-world transformation is simply
the magnification due to the geometry, viz.

x = (z/f)*gl
y=1{z/f)*h,.

(28)

(29)
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Eq. (29) replaces Egs. (23) and (24) of the projected light case above. Note that the
corrections for axis misalignment, Eq. (25) in the projected light scenario, are absent
here, since there is no additional light source coordinate system.

V. CALIBRATION OF THE CAMERA

In this section we summarize the data collection and parameter fitting techniques
used on several camera/light-source configurations.

Data

The calibration procedure itself entails careful measurement of a number of field
points together with the corresponding image points. To obtain such measurements,
a small rectangular block was placed at a number of different positions in the
camera’s field of view, and was illuminated by the plane of light as described above.
The location of the center of the block’s face relative to the light projector was
measured by hand. Its position in the image plane was taken to be the centroid of
the largest blob in the thresholded image. This approach was found to yield
consistent data insensitive to small amounts of noise in the image. Using the
centroid reduces the effects of quantization mentioned earlier.

Parameters
The six basic physical parameters, defined in the derivation above, are
s—pixel spacing in i direction (*horizontally”)
t—pixel spacing in j direction (“ vertically”)
f—lens focal length (as actually focussed)
B—angle between optical axis and plane of light

dom—height of the front nodal point of the lens above light plane (y’
coordinate of optical center)

F; ,..—2’ coordinate of the front nodal point of the lens.

{Note that the transformation depends on the actual distance of the optical center
of the lens from the image plane. Since changing the focus changes this distance.
and hence the magnification of the lens, it is necessary to set the focus of the lens
once at calibration time, and not to refocus later. In order to have a sharp picture of
nearby objects, where accuracy is most important, we set the focus of the lens at its
minimum distance—an easily repeatable setting.)

The six basic parameters can all be measured approximately. In particular, f is
nominally the focal length engraved on the lens mount. The rear nodal point of the
lens is located on the lens axis at a distance f from the pixel raster. F,., and 4.,
may be measured directly, and Fi,, and 4., obtained using Eq. (27). N may be
initially taken to be zero (thin lens model); better values of N may be obtained by
fitting to the data (below), or may be known from prior experience.

A set of coefficients 4 through F can be computed using Egs. (26). In addition,
there are .seven small-correction parameters G through L, and N, described in
Section III. These may be more difficult to measure directly, but they may be taken
to be zero for the initial trial values. These initial values are close enough to the
actual values that the fitting procedures described below converge dependably to the
actual values of the parameters.
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The trial values are not exact enough to be used in robot applications, however.
The location of the optical center of the lens is known only approximately; the pixel
spacing may be difficult to measure exactly; and the small departures from the
perfect lens model nonetheless have to be included in the transformation equations.
Thus it is generally necessary to perform a best fit calibration to real data.

It seems attractive at first to vary the coefficients 4 through F (rather than the
parameters), since the fitting of (A4, B, C) proceeds independently from that of
(D, E, F). However, the best fit obtained in this manner may not correspond to
realizable values of the physical parameters. This situation arises because f appears
only as s/f or t/f, and so there are really only five independent parameters (s/f,
t/f, d, F, and B). A fit performed on the six coefficients A through F indepen-
dently results in the physical parameters being overspecified.

We therefore vary the five physical parameters, recomputing coefficients A
through F for each selection of parameters. This has the additional advantage that
bounds can be placed on the physical parameters, reflecting limits based on our
measurements of the camera geometry. These bounds help prevent the fitting
program from becoming bogged down in solutions that do not correspond with the
physical system.

Measure of Fit

A set of values of the parameters must be selected, so that the transformation
equations provide a description of the observed reality that is as accurate as
possible. A measure of fit must be selected, so that different possible choices of
parameters can be compared, and the *“most accurate” selected.

Such a measure of fit was initially obtained by transforming the observed raster
coordinates (i, j) of each data point, using Egs. (23) and (24), to the corresponding
real-world coordinates (X(omps Z¢omp)- These computed values were then compared
with the coordinates (x’, z’) actually observed. However, this measure of fit on
distances in the external world gives far more weight to distant points than to
nearby points, since a one-row change in j corresponds to many millimeters in z’,
for large z’. It may even result in situations where the parameters are selected on the
basis of one or two points, and are in fact selected on the basis of the quantization
effects at those points, and not on the actual camera characteristics.

We therefore used the inverse transformation, from (x’, z’) to (i, j):

x’/D

ET T T T (30)
2 =-C
T A+Bs(z-C)’

pr, for egch point (x’, z'),.its computed .image }ocation ({ comps Jeomp) (fOr a
particular choice of parameters) is compared with the image location (i, j) actually
observed. The measure of fit is now the sum of squares between computed and
observed image coordinates:

fit = [ (comp = )7+ (eomp —4)7]. (31)
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(The sum is taken over all the data points). The parameters were then selected to
minimize the measure of fit.

It should be noted that in general the exact choice of parameters, by means of a
fit to data, depends on the selection of the data points. Choosing most of the data
points close to the camera will favor calibration accuracy close in, and conversely.
We chose to concentrate our test points towards the center of the image, where we
wanted the greatest accuracy for parts acquisition by the robot arm.

The Fit

The following recursive scheme was used to vary the parameters. For this scheme,
the parameters are numbered from 1 to n. When the routine is called at some
“level” (parameter number) k, it adjusts the parameters below k until a best fit is
obtained. This is the best fit for the given values of the parameters at level k and
above, varying only the parameters below level k. This routine is called for several
values of the current parameter k. A 1-variable Newton’s method is used to locate
the particular value of parameter k that corresponds to the best fit. Each time
parameter k takes on a new value, all parameters below k are again adjusted to
assure best fit at the new value. This adjustment is accomplished simply by having
the routine call itself, but with level k — 1.

Because the execution time of the fitting program was substantial, and increased
exponentially as the number of parameters, it was necessary to allow only a subset
of the parameters to vary during a single computer run. A more efficient optimiza-
tion strategy is given in {17].

Three camera/light-projector configurations were calibrated in this way, varying
the five physical parameters required by the model of a perfect camera. In each case,
the least squares fit corresponded to an rms error of about one or two pixels per
data point. Some error is, of course, expected. The quantization due to the finite
pixel size is expected to give rise to an rms error of about 0.4 pixels per data point.
Errors in the manual data collection would increase this. as would variations in the
camera exposure (light output) without corresponding compensation in the
thresholding.

Still, we felt that some of the error in the fit might be due to imperfect lenses or to
geometric variables not yet considered. Inclusion of additional parameters in the
recursive fitting program was straightforward.

Distortion due to the lens was added as a sixth parameter. The resulting
transformations have been described above. For the first camera the inclusion of
distortion allowed a sum-of-squares fit of parameters that was closer by nearly a
factor of two. For the other two cases no distortion had been anticipated, and none
was found. ‘

However, the angle between the x and x’ axes (camera/light-source misalign-
ment) was introduced as an additional parameter. This parameter was to be zero by
the definition of the coordinate system. But a small error in alignment of the camera
and light projector would not be surprising. Introduction of this seventh parameter
reduced the errors in the second and third camera configurations, again by nearly a
factor of two. The error in alignment, represented by the fitted value of this seventh
parameter, was about 0.5°. Final rms errors in fit were thus about one pixel per data
point in all three cases, equivalent to about 2 mm of error at the center of the field
of view (at a distance of about 350 mm).
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TABLE 1
Comparison of Data from Seven calibration

ID 1 2 3 4 5 6 7
Date 2/82 7/82 7/82  12/82 10/83 5/84 11/84
Camera 2200 2500 2500 2500 2500 2500 2500
Lens (mm) 9 16 16 9 12.5 12.5 9
Flash bracket A B B C D D C

bracket size small med med med large large med
Narrow test

object? N N N N Y Y Y
No. of points 36 52 56 68 63 30 149
rms error 0.77 1.27 1.08 0.81 0.70 0.50" 0.57
Best fit values of parameters
1/s ({l/mm) 23.62 28.71 28.53 2828 278 27.82 28.01
1/t ({l/mm) 23.90 22.95 22.93 2209 220 23.80¢ 24.24¢
d (mm)/ 97.0 158.5 130.7 162.2  281. 280.9 159.7
F (mm)’ -46.1 -416 —406 —133 123 123.0 -13.2
Beta (deg) 221 236 231 25.6 16.6 16.6 241
Nodal separation

(mm) — — — — 44, 44.1 4.8
Distortion - .0008 0 0. 0. -0.00033 -0.00033 -0.00164

(inverse mm squared)

Rotation (deg)* 0. -0.5 -0.5 0.9 -0.7 -0.7 14
/ (mm) 0. 0. 0. 0. 0. 0. -0.35
J (deg)¢ 0. -0.5 -0.5 0. 1.2 1.2 -1.9
K (pixels) - — — 1043 119.7 128.2 108.8

L (pixels) — — — 1389 136.5 155.6° 164.4¢

“Same bracket as B except for 4,.

»Some of the parameters were held fixed to their prior (10,/83) value.

¢ These resolutions and offsets reflect a change in digitization hardware. The change affects ¢, K. and
L. by increasing the number of apparent pixels in the final digitized video signal. and by changing the
uming of VSYNC and HSYNC.

“* —"means this parameter had not been implemented vet.

“These angles must be converted to radians before being used in the equations as given.

"Measured from the front nodal point.

Subsequent experience, with additional cameras and light projectors. suggested
the inclusion of the remaining parameters discussed in Section IIl. The results of
these calibrations— seven in all— are summarized in Table 1, and an example of
the parameters before and after fitting is given in Table 2.

Application

One of the camera/light-projector systems, calibrated as discussed in the previous
subsection, was mounted on the wrist of a small industrial robot at NBS. This robot
is used experimentally to retrieve objects in its field of view. Using the equations
derived earlier in this paper, and the parameters obtained as described above, the
robot can reliably ascertain the position of objects in its field of view. and also
(using a double-line projector [9]) can determine the location and orientation of
plane surfaces on the object, with sufficient accuracy to pick up the object per-
pendicularly to its face, or visually to explore it further.



218 PETER MANSBACH

TABLE 2
Comparison of Parameters before and after Fitting Procedure
Initial Final
params fit
rms error 10.12 0.57
1/s (!l /mm) 283 28.01
1/t (Il/mm) 239 24.24
d (mm) 162.2 159.7
F (mm) -133 -13.2
B (deg) 256 241
Nodal separation (mm) 0. 438
Distortion .00000 —.00164
(inverse mm squared)
Rotation (deg) 0.9 1.4
[ (mm) 0. -0.5
J (deg) 0. -19
K (pixels) 118.3 108.8
L (pixels) 150.3 164.4

Notes. The data comes from calibration #7 (see Table 1).
The initial parameters are taken from a previous fit of a similar
bracket and camera, namely #4 (Table 1. adjusted per ¢).

Some small uncertainty was felt to exist in the fitted value of s, the horizontal
pixel spacing. This was attributed to the light falloff which occurs within the plane
of light, towards the edges of the picture. This light falloff affects the observed
centroid of the light stripe in the image, moving it systematically towards the center
of the picture. This in turn gives rise to a too small value for s. Using a narrower
object in the data collection phase of calibrations #35, 6, and 7 (see Table 1) has in
fact systematically increased the value of s (decreased 1/s).

CONCLUSION

We have derived relatively simple transformation equations to convert from
image coordinates to external downrange and crossrange coordinates for points
illuminated by a plane of light. These equations, together with correction terms as
needed, are used to calibrate a camera/light-projector system by varying a small
number of parameters, using a least squares fit to a fairly small number of
experimentally measured points. The resulting fitted parameters define an image-to-
real-world transformation, which we have used satisfactorily on a parts-acquisition
robot.
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